Thereis no conflict between causality and randomness or between determinism and
probability if we agree, as we must, that scientific theories are not discoveries of the
laws of nature but rather inventions of the human mind. Their consequences are
presented in deterministic form if we examine the results of a single trial; they are
presented as probabilistic statements if we are interested in averages of many trials.
In both cases, all statements are qualified. In the first case, the uncertainties are of
the form “ with certain errors and in certain ranges of the relevant parameters’; in
the second, “ with a high degree of certainty if the number of trialsislarge enough.”

- Athanasios Papoulis

Chapter 4

Multiscale Image Statistics

When digital images are considered as arrays of observations made of an underlying
scene, the vocabulary and calculus of statistics may be applied to their analysis. If an
image is subject to noise in pixel measurement, it should be presented within the context
of either known or computed properties of the pixel values. These properties include the
sample size or raster resolution and statistics such as the variance of the additive noise.

Thisis an introduction to the concept of multiscale image statistics. In particular, the
next sections describe the generation of central moments of the local probability density
of intensity values. A particular model of images as composed of piecewise regions
having similar statistical properties (having similar probability distributions of intensity)
is assumed for the construction of multiscale statistics. This model of images as samples
of piecewise ergodic stochastic processes is presented after a brief introduction to provide
afoundation for the rest of the chapter.

Later sections present the construction of multiscale central moments of intensity. An
earlier section in Chapter 2 describes the use of centra moments to reconstruct the
probability density function uniquely. The approach presented here outlines the
generation of the central moments of the local intensity histogram of any arbitrary order.
Later sections provide examples of these local central moments up to the fourth order.
Properties of these moments are explained, and their behavior is compared with other
common image processing operators. The multiscale central moments are generalized to
images of two dimensions as well as multivalued images containing two values per pixel.

Applications of multiscale central moments are included. In particular, the use of
these measurements in the selection of control parameters in nonlinear diffusion systems
for image processing are shown.

4.1. Background and Introduction

Statistical pattern recognition is a discipline with along and well established history.
The literature is mature, and severa texts have been written describing image analysis
through the statistical methods. Filtering methods based on local neighborhood statistics
such as median filtering can be found throughout the literature. Image contrast
enhancement techniques based on histogram equalization have also been explored and are
in use in medical as well as other production environments [Pizer 1987]. Numerous
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methods for performing segmentation and classification of images based on statistical
pattern recognition are well documented in various texts [e.g., Duda 1974]. Statistically
based relaxation filters founded on the theory of Markov processes (Markov Random
Fields) [Geman 1984, Chellappa 1993, Jain 1985] as well as relaxation strategies based
on expectation-maximization methods [Dempster 1980] also have along history. Geiger
and Yuille provide a framework for comparing these and other segmentation strategies,
including nonlinear diffusion discussed later in this chapter, in their survey of the
common threads shared by different algorithms [Geiger 1991].

Typicaly, statistical methods in image processing employ the histogram of the image
or some other means of representing the probability density function of the intensity
values. This representation is most often computed at the maximum outer scale of the
image.  That is, the histograms, mixture models, or probability distribution
approximations are computed across the whole image, including all pixel values equally.

Image-wide probability density functions are commonly approximated as a Gaussian
or linear combinations of multiple Gaussians. A maximum likelihood agorithm is
usually then applied to classify individual pixel observations. Such methods seldom
include local spatial trends or the geometry of the image as part of the statistical classifier.
Maximum likelihood classifiers often employ image geometry in a post-process
connectivity filter or, in the case of expectation-maximization methods, the classifier
iterates between the maximum likelihood cal culation and connectivity filtering.

Exceptions to the generalization that statistics are computed at the outer scale of the
image include the contrast enhancement method of adaptive histogram equalization.
Adaptive histogram equalization (or AHE) and its derivatives (Contrast limited AHE or
CLAHE, and Sharpened AHE or SHAHE) construct local histograms of image intensity
and compute new image values that generate an equalized local probability distribution.
[Cromartie 1995]. Early algorithms for AHE included calculating histograms over non-
overlapping rectangular neighborhoods and interpolation between equalized values.
[Pizer 1987]. The choice of neighborhood operator was originaly made on the basis of
computational efficiency.

Other exceptions include Markov random fields and sigma filters. Markov random
fields (MRFs) filters apply maximum likelihood estimators over a local neighborhood
[Geman 1984]. Techniques using sigma filtering also compute nonlinear smoothing
functions based on a local sampling window [Lee 1983]. Local statistics within a well
defined neighborhood are computed and the central pixel value is adjusted according to
some function of those statistics. Questions often arise over the priors used in sigma
filters and smoothing based on Markov random fields. Other questions arise over the
selection of the neighborhood function.

This chapter addresses the construction of robust statistics over a principled
neighborhood function. The values that are proposed are local means and local central
moments of intensity.



Multiscale | mage Statistics 51

4.2. Images and Stochastic Processes

This work assumes a particular model for images. As with most statistical pattern
recognition systems, this research is based on the assumption that the input signal follows
a Gibbs distribution. Stated loosely, a Gibbs assumption states that the value for the
intensity at a particular location has compact local support. This research restates these
assumptions using the language of stochastic processes (defined below). Restating and
further illuminating this common assumption requires the following background material.

4.2.1. Stochastic Processes

Chapter 2 defines an image to be a representation of some scene. The recording of the
information within the scene is always subject to error of some kind (e.g., approximation
error, measurement error, noise, discretization error, etc.) If the measurement of the
scene is repeated, an identical image is not always acquired. However, there is usually a
strong likelihood that the corresponding pixel values within two images of the same scene
will have similar intensities.

The study of stochastic processes enables the quantification and analysis of the
predictability of image measurement, the likelihood of obtaining similar images upon
repeated acquisition. A more complete version of the following discussion can be found
in Papoulis’ introduction to random variables and stochastic processes [Papoulis 1991].
What is presented here is his organization modified from a time-based structure to one
based on spatial location, transferring it to the framework of image processing.

A stochastic process F is a mapping of locations in space to random variables.
Representations for F include the function notation of E(p,x) which represents the xth
sample of the random variable located at position p. This notation is often abbreviated as
E(p) when individual observations are not of interest, but rather the random variable
itself. Formally,

Definition: A stochastic process F (aternatively F(p,x) or F(p)) is a continuous
mapping F: R'® X, where X isarandom variable. The domain of F is the set of

al points p of an n-dimensiona space: p 1 R'. The range of F is a random
variable whose probability distribution function is

F(x,p) = P{E(p) (x}

F isafunction of the spatia variable p, and it gives the probability of the event
{E(p) X} consisting of al outcomes x such that, at the specific location p, the
samples F(p,x) of F do not exceed the value of x. The corresponding probability
density function isf(x,p) such that

_JF(x.p)
x

The definition given above describes F(p,x) as a continuous-space process since the
domain of F is continuous over R". If F is a mapping from the space of integers (i.e.,

f(x.p)
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p1 Z"), then Fisadiscrete-space process. If the values of F(p,x) are countable, then F
isadiscrete-state process; otherwise it is described as a continuous-state process.

4.2.2. Imagesas Samples
Paraphrasing Papoulis, F(p,x) has four interpretations:
1. E(p,x) isan ensemble of functions with p and x as variables.

2. Itisasingle function F(po,X), where po is a constant, and x is allowed to vary. In this
case F(po,X) is called the state of the process at po.

3. FE(p,xo) isasingle function (or a sample of the given process) where X, is fixed, and p
isalowed to vary.

4. 1If xo and pp are constant, F(po,Xo) isascalar value.

Using the interpretation 3 above, the process of capturing the intensity values of a scene
to form a digital image I(p) can be considered to be a sample from a discrete-space
discrete-state stochastic process F(p). Thisinterpretation assigns I(p) = F(p,Xp), for some
Xo, as afamily or ensemble of samples one from each pixel location p.

This view of images is a natural one. Consider the acquisition of still images of a
stationary scene using a video camera. If there is noise in the input signal, two images
acquired at dightly different times Io(p) = E(p, Xg), and 11(p) = E(p, X1), while not
identical, would be subject to the same noise processes. Optical distortions, manifesting
themselves as spatial functions, would exhibit themselves identically in each image.
Color shifts, variable sensitivity of the detector grid, radio frequency noise and amplifier
noise would not generate the same values on repeated sampling, but would follow the
same behavior for each location p.

Given an ensemble of images of the same scene {lo(p), 11(p), ... In(pP)}, (equivalently
a large set of samples {F(p, Xo), E(p,X1), ... , E(p, Xn)} of process F) where n is a large
number, the expected, average or mean intensity value M(l(p)) of pixel p can be
estimated using the following calculation.

18 18
m (p) = me(p) =<E(p)) »—a li(p)=—-a Hpx) (4-1)
i=1 i=1
Note the natural association between the expected value or mean of the stochastic process
and the mean of the sample set of images. The variance of the sample set of images
V(I(p)) can be calculated in a similar fashion, with a corresponding relationship to the
variance of F.

e =) »=& (i) mE)f =24 Eex)- m@) @2
i=1 i=1
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The notation nf_cz)(p) refers to the second central moment of F at location p. The order of

the moment is indicated by the superscript value. The parenthesized superscript denotes
that thisis a central moment; that is, that this moment is calculated about the mean of F at
p. A general form for central moments of F at p given an ensemble of samplesis

0 =(E0)- 0)f) =78 Eox)- mee)) @3)

4.2.3. Ergodicity

Stochastic processes are not functions, but mappings to random variables. When using
real datait is not always convenient or possible to acquire sufficient samples of a single
process F(p) to generate accurate information regarding the probability density function
of the random variable for each location p. In many real examples in image processing,
only one image is provided, not several. If F may be assumed to be stationary, that is the
probability densities of the random elements of F are identical independent of p, it is
possible to use these assumptions or properties to perform spatial averaging in place of
averaging across many samples. The concept of ergodicity describes these conditions
when a practitioner may trade spatial averaging for sample averaging.

Definition: Consider the stochastic process F(x) where x 1 R. A stochastic

process F(x) is said to be mean-ergodic if for some fixed sample xp asd ® ¥ the
following condition holds

CHCtDE(X- t Xo)ot 34%34® m () (4-42)

} 0 if x£-4
wixd)=it if -4d<x£4
i g (4-4b)

where the definition of the mean value mg(x) is described in equation (4-1).

Notice that (4-4) is equivalent to a convolution of the function E(x,Xy) with a zero-
centered square pulse function of height y, and width d centered at x.

The definition of mean-ergodicity as shown above can easily be generalized to
processes of higher spatial dimensions. The concept of ergodicity can also be generalized
from equation (4-4) to higher order central moments. For example,

Definition: A stochastic process F(x) (where x T RY), is said to be variance-
ergodic if for some fixed sample xo asa® ¥ the following condition holds

Wt EC-t x,)-m(x)) ot %ig® () (4-50)
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o0 if x£-4
wixd)=ig if -J<x£%
L0 if 9<x (4-50)

2

where the definition of the second central moment nf{” (x) is shown in equation
(4-2).

Within the integral, the mean value term is relative to the position x, rather than to the
index of integrationt. That is, the right value in the squared term of the integral is mg(x)
and not m(t).

Given these definitions of mean-ergodicity and variance-ergodicity, it can be shown
that if aprocess F is variance-ergodic, it must also be mean-ergodic. The converse of this
statement, however, is not true [Papoulis 1991].

Ergodicity may be generalized to even higher moments. If a processis ergodic in the
strict sense, increasing the spatial measurement window about a pixel of a single sample
of the process uniquely specifies the probability density function for the stochastic
process. Further exploration of these ideas is beyond the scope of this dissertation.

If a process has a constant value for some observable moment of its distribution
across space, it can be considered to be ergodic in a weak sense. That is, if the mean
value of a process varies across space but the variance remains constant about that mean,
then the process can be considered to be variance ergodic in the weak sense.

4.2.4. Ergodicity and I mages

If an image, which is a representation of a wider scene, is considered to be a sample of a
completely ergodic process, where “ergodic” is defined in the strict sense, then the scene
itself is of little interest since its expected brightness is constant, essentially a grey field.
The image portrays significant information about the noise in the acquisition process, but
little other information.

What about images of scenes that have varying brightness and contrast? This section
introduces piecewise or limited definitions of ergodicity. This distinction and its
ramifications make the following definitions more applicable to image processing tasks.

Definition: A process F(x) (wherex 1 RV, is piecewise mean-ergodic if it can be
partitioned into intervals such that for each interval [a,b] where a [k [b:

\b
B o QE(tXd =m()+e where e® Oas(b-a) ® ¥ (4-6)

Definition: A process F(x) (wherex 1 RY), is piecewise variance-ergodic if it can
be partitioned into intervals such that for each interval [a,b] where a [k [b:

(b-la)(s Et.0-m)dt =nf’(x)+e where e® Oas(b-a)® ¥  (4-7)
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As in the previous definitions, definitions of higher order central moments and for higher
dimensions may be inferred from these cases.

Given a single sample 1(x) = F(X,xg) of a piecewise ergodic process F, it is not
possible to recover either m.(x) or nf) (x) completely since the partitioned intervals

limit the averaging process. However, some reduction of the variance of the estimates of
m(x) and nf? (x) may still be achieved through spatial averaging. If the boundaries of

the partitions are known a priori, an optimal estimate of both m.(x) and n{” (x) can be
calculated from a given sample I(x).

If the boundaries of the partitions of F are not known, the problem of optimally
estimating m: (x) and nf) (x) from an image sample 1(x) is underspecified. Without the
size (or scale) of the intervals, m. (x) may be estimated using equation (4-1) by varying
the interval width |b-a| for each location x and selecting an interval size based on some
criterion. A regularizing sampling kerndl is required to handle these uncertain boundary
positions and the randomness of E. This regularization requirement is the basis for the
research presented in this chapter, the development of multiscale techniques for
estimating and evaluating the local probability densitiesin an image.

4.3 Multiscale Statistics

Without a priori knowledge of the boundaries and the object widths within an image,
locally adaptive multiscale statistical measurements are required to analyze the
probability distribution across an arbitrary region of an image. This section presents
multiscale image statistics, a technique developed through this research for estimating
central moments of the probability distribution of intensities at arbitrary locations within
an image across a continuously varying range of scales. The piecewise ergodic nature of
the image is an underlying assumption of these developments.

The definitions of mean and variance ergodicity in equations (4-4) and (4-5) imply the
measurement of central moments in a local neighborhood of varying size about a point.
Consider a set of observed values, 1(x) ] R', where for purposes of discussion the
location x I R, but can easily be generalized to R". The values of ~I(x) may be sampled
over alocal neighborhood about a particular location x using a weighting function, w(x),
and the convolution operation, 1(x) A w(x), where

1(x) A w(x) = dw(t Y (x-t)dt = éw(x - )I(t)dt (4-8)

A regularizing sampling kernel is desired. To avoid a preference in orientation or
location, the sampling function should be invariant with respect to spatial trandlation and
gpatial rotation. As with all probability weighting functions it is essential that

c‘iw(t)dt =1. One function that meets the above criterion is a normalized Gaussian
function. Therefore, let
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w(x) = G(s,x) = 312—p e’ (4-9)
where the parameter s represents the width of the sampling aperture.

4.3.1. Multiscale Mean

Let the scale space measurement comprised of a sum of the original image intensities
weighted by a Gaussian sampling kernel be the average or expected value of 1(x) over
the neighborhood defined by the aperture of sizes. Thislocal meanis

neighborhood (s)

mixls)=(Ins)= A wn)i(x- ) = s x- I (@10)

where <T(x);s> is read as the expected value of 1(x) measured with aperture s. This

definition follows from the assumption that the observed values ~I(x) represent a single
sample from a mean-ergodic (or piecewise mean-ergodic) stochastic process.

The effect of a multiscale statistical operator can be viewed through its response to
the input of a square pulse function. The resulting pulse transfer function is the output of
a multiscale statistical operator acting upon a simple piecewise ergodic input signal. A
point transfer function, the result of applying the multiscale statistical operator to a Dirac
deltafunction input is not defined; statistics cannot be generalized from a single sample.

For the purposes of this discussion, the assumed input signal is P(d, x), a square pulse
function centered at the origin with a spatial width of d and a height of 1/d (See Figure
4.1.). Note that OIli@m P(d,x) =d(x).

0

1/d

d

Figure 4.1a. 1D square pulse function P(d, x). Used as the input for generating pulse transfer
functions.
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Figure 4.1b. 1D square pulse functions P(1, x), P(2, x), P(4, x), P(8, x). From left to right:
d=1,d=2,d=4,d=8; limP(d,x) =d(x).
d® 0

The relationship between object width and the aperture of the multiscale statistical
operator can be seen by applying the statistical mean operator at a variety of scales.
Alternately, a statistical operator may be applied to square pulse inputs of various widths.
Throughout this chapter the relationship between object and operator scale of the
multiscale mean and higher order multiscale central moment operators will be presented
by applying the operator to square pulse inputs of varying widths. An analysis of the
relationship between object scale and operator apertureis found in Section 4.5.

The 1D pulse transfer function for the multiscale mean operation is described in the
following equation and shown in Figure 4.2 for varying values of d.

Mpgax)(XIs) = P(d,x) A G(s,x):z—lderf%gg- 2—1derf%'§8 (4-11)

erf(x) is the standard error function, erf (x) = (‘i G(Lt)dt. Asthe scale of the operator

decreases relative to the size of the object or pulse, it provides a better approximation to
the original input signal.

0.4 2
}o/a\ 0.15
0.06
0.2 0.1
0.04
0.1 0.05 0.02
- = 3 1 6 -4 -

2 1 6 -10 -5 5 10

Figure 4.2. 1D Pulse transfer function for the multiscale mean operator My x)(X[S) for

s =1. Fromlefttoright: d=1,d=2,d =4, d =8. The dashed lines represent the input pulse
function P(d,x). Note the differencein spatial and intensity rangesin each plot.

4.3.2. Multiscale Variance

It is straightforward to calculate a value for the local variance over the neighborhood
specified by the scale parameter s. Equation (4-12) describes the local variance of
intensity about a point x at scales.
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) (x1s) =((100- m(x]9)):s)
= 8t x- (®)- mx|s)) et
= 9C(s.x- D) et - (mixIs)y
=G(s A (I00) - [mxIs)y

The point transfer function of the local variance operator is not defined for the Dirac delta
function d(x) (i.e, ?X)(x|s) does not exist). However, the multiscale variance

operation can be visually portrayed through its pulse transfer function 2() o (X[8)- The
multiscale variance of a pulse transfer function is

(4-12)

w0 (X[8) = G(s,) A (P(d,x))” - (G(s,x)A P(d,x))*

(et ) erR) ot i) 2er()

Figure 4.3 shows the multiscale variance operator applied to a square pulse P(d, x) for
varying values of d.

(4-13)

Figure 4.3. 1D Pulse transfer function for the multiscale variance operator nif()d x)(X|s) for

s =1 From left toright: d =1, d=2,d =4, d =28 Note the difference in spatial and
intensity ranges in each plot.

The function shown in equation (4-13) is interesting in its resemblance to the square
of the scade gpace gradient magnitude function (eg., in the 1D casg
INP(d,x |s)* = G P(d,x |s))? = (£ G(s,x) A P(d,x))?). Both are invariant with
respect to rotation and trandation, and both have similar responses to a given input
stimulus. For example, Figure 4.4 portrays the variance calculation and the square of the
scale-space 1D gradient magnitude of P(d,x).
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Figure 4.4. Comparison of the 1D Pulse transfer function for the multiscale variance operator

2() 4.x) (x|s) with s =1 to the square multiscale gradient magnitude operator. Top row,
z()d,x) (x|s). Bottomrow: (3% P(d,x |S))2. From lefttoright: d=1,d=2,d=4,d=

8. Notethe differencein spatial and intensity rangesin each plot.
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4.3.3. Multiscale Skewnessand Kurtosis

The third and fourth local central moments are easily calculated in a similar fashion. The
multiscale third central moment is

) (x]s) = ) G(s.x- (1) - m(xIs)) et
=86 x- H©) ¢t - 3mxIs)&(s.x- (i) et
+3(m (xI5))’ (. x- DIV - ([ x15))
=G(s,x) A (i) - 3m(x|s)B(s, 0 A [(O)) §+2(m xIs))
=6(s 0 A (IV) - 3m(xIs)m? (x[s)- [ (x]s))

The third centra moment is demonstrated visually through its pulse transfer function
across arange of pulse widthsin Figure 4.5.

(4-14)

Figure 45. 1D Pulse transfer function of 3’()d o (X]s) with s = 1. From left to right:

d=1,d=2,d=4,d=8. Notethedifferencein spatial and intensity rangesin each plot.
The response of the multiscale third central moment of a square pulse 3(’ o X18) is
similar to the multiscale first derivative of a pulse stimulus. Although the magnitude of
the responses of the two operations are often an order of magnitude apart, the
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correspondence between the shapes of the two curves is remarkable. The two functions
are compared in Figure 4.6.

Figure 4.6. Comparison of m(f’()d’x) (x|s) withs =1to &= P(d,x | S) withs = 1. Top row,
:?d,x) (x|s). Bottomrow: 7= P(d,x |S). Fromlefttoright d=1,d=2d=4,d=8.
Note the difference in spatial and intensity ranges in each plot.

_—

The multiscale fourth central moment is shown and simplified in equation (4-15).
nf? (x1s) = 9G(s.x- O(I()- m(x|s)) et
= QS x- ®) dt - 4m (x[s)S(s x- (©)) et
+6(m (x |s))266(s,x- t)(T(t))zdt - 4 (x |s))363(s,x- )7 (t)dt
+(m (x| s))4&(s,x- t)dt
=G(s ) A (i)
-am (x |)(s. 0 A (10) §+12(n (x19)) s, 90 A (0) §
+16(m (x|5)) - 6(m (x[)) Bs ) A ((x)) §+5(m (x15))
=6 X)A (1) - 4m x s)nf" (x] )
-6 (x1)) (s 9 A (109) g o(m x1 ) @15
4D
=G(s ) A (I00) - 4m (x[s)nf? (x| 5)- &(m(x|5)) m(x[s)- (m(xs))

The fourth centra moment is demonstrated visually through its pulse transfer function
across arange of pulse widthsin Figure 4.7.
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Figure 4.7. 1D Pulse transfer function of 4()d o (X]s) withs = 1. Fromlefttoright:d =1,

d=2,d=4,d=8. Notethedifference in spatial and intensity ranges in each plot.

The function nf,‘&x) (x|s) has a response similar to the sgquare of the scale-space

curvature or second derivative measure of a pulse stimulus (e.g., in 1D the square of the
multiscale curvature of a pulse P(d,x) is (;Tﬂ:—z P(d,x|s))* = (;Tﬂ:—z G(s,x) A P(d,x))%). At
relatively large apertures the two curves take on similar properties. The two functions are
compared in Figure 4.8.

Figure 4.8. Comparison of “()d o (X|s) withs =1to (1_11])(2_2 P(d,x |s))* withs = 1. Top

row, 4()d , (X|s). Bottom row: (ﬁﬂ;—z P(d,x |s))*. Fromlefttoright: d=1,d=2,d=
4,d = 8. Notethedifferencein spatial and intensity ranges in each plot.

4.3.4. Invariance with respect to linear functions of intensity

As specified before, the selection of the Gaussian distribution as the sampling kernel was
motivated by a desire for the sampling filter to be invariant with respect to particular
transformations of x. It may be desirable to analyze the sampled measurements of the
array of I(x) vaues in dimensionless units (i.e., invariant with respect to certain
transformations of 1). The dimensions of thethe third and fourth central moments shown
above are subject to exponentiation by the order of the moment calculation.
Dimensionless measurements may be obtained by normalizing the central moments with
powers of the square root of vy, the variance of the input noise (if known). The resulting
measures are described as skewness and kurtosis. Their local manifestations, given a
sampling aperture s, are defined as

P (x|s)
(o)

Local Skewness: 9. (x|s) = (4-16)
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9 (xs)
(o)

In the normalizations shown above, vy is used rather than the calculated second
central moment nf?’(x|s). In the case where the neighborhood about a pixel is

contiguous and ergodic, nf)(x |s) can be used. However, under the piecewise ergodic
assumption, discontinuities introduce bias into the value mf?(x |s), making it a poor

estimate of vo where boundary conditions exist. This suggests a different form of
multiscale statistical analysis to overcome this bias. Directional analysis methods that
deemphasize the bias in multiscale central moment cal culations introduced by local image
geometry isthe topic of Chapter 5.

Local Kurtosis 97 (x|s) = (4-17)

4.4. Other Multiscale Central Moments

The general form for the multiscale central moment of order k of ~I(x) isgiven by

o (x19) =((i00- m(x19)) )
= (s A (10- mx]s)) (-18)
= 6@(5,)(- t)(i(t)- ml(x |S))kdt

Although higher moments than the fourth centra moment may be also of interest, the
remainder of this discussion will address the nature of scale, noise and extensions of this
concept of moments to multiple dimensions as well as to images containing multiple
values per pixel.

4.5. Characteristics of Multiscale mage Statistics

It is important to recognize multiscale image statistics as central moments of the local
probability distribution of intensity values taken from the neighborhood about a pixel
location. Given the ensemble of all orders of these centra moments, it is possible to
reproduce the statistical behavior of the input signal and its noise properties at a particular
location x in the image ~I(x). These moments also capture some information of the local
image geometry.

Multiscale image statistics may be illuminated by contrasting them with other image
processing concepts. Such comparisons can lead to deeper insights into the nature of
multiscale central moments of intensity.

45.1. Multiscale Statistics vs. Difference of Gaussian Operators

A cursory glance at the mathematical form for the k-th order multiscale central moment
of intensity in equation (4-18) might falsely suggest that these moments are smply aform
of contrast measurement by a difference of two Gaussian operators (DoG) raised to the k-
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th power. There are some crucial differences between an exponentiated difference of
Gaussian operation and the multiscale central moments described above.

In difference of Gaussian processing, an image is convolved with two Gaussian
operators of differing aperture. The two filtered images are then subtracted to produce a
resultant image that emphasizes boundary information within the original image. The
process of filtering an image via a difference of Gausian operator and raising the result to
the k-th power isformally described as follows:

(DOGq(X);Sa,Sb))( = (G(s 5 X) A (i(X))- G(s ,,x) A Q(X))) (4-19)
:geée(sb,x- £ ()t - 6G(Sa’x' n)(i(n))ﬂlngk

To simplify the comparison, equation (4-18) can be further simplified to the following
expression.

?(x15) = Gls0A (0 myx1s)) @20
= (\SG(S’X' t)?(t)- éf(s,x- n)NI(n)dngk dt

Contrasting equation (4-19) and equation (4-20), their differences are immediately
apparent. The DoG operation has two separate aperture parameters that govern its
behavior where multiscal e statistics use a single aperture. A more important distinction is
the association of the exponential term. In a difference of Gaussian image raised to the k-
th power, the difference of two filtered signals is exponentiated. In multiscale statistics
the difference between the original input image and a filtered image is taken before being
exponentiated and then filtered. Since convolution is a weighted summation process,
exponentiated unsharp masking and multiscale statistics may be distinguished as follows:
the exponentiated difference of Gaussian process is a power of the difference of two
weighted sums. Multiscale centra moments of intensity are weighted sums of an
exponentiated difference. More simply, this is another example where the square of the
sums does not equal the sum of the squares.

To illuminate the difference between these two forms of image measurement, a
comparison between variance and the square of the DoG response to a pulse input is
shown in Figuire 4.9. Two different aperture selections are shown for the DoG filter.
These results demonstrate that the response of the DoG filter is sensitive to the selection
of the aperture size parameters.
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I.||

'a,' b 'c.

Figure 4.9. Comparisons of rfﬁ)d,x) (x| s) with DoG(P(d,x); S& Sb). Theinput functionisa
pulse P(d,x) withd = 1. a Z()dlx) (x| s) withs =1, b. DoG(P(d,X); Sa Sp) Withs, = S}/_/E ,

Sp=1, and c. DoG(P(d,x); Sa Sp) Withs,=0,s,=1

4.5.2. Multiscale Moments of Intensity vs. Moment Invariants of Image Functions

The unmodified term “central moment” is ambiguous when taken in the context of image
processing. Thereis afamily of methods for image analysis describing image geometry
that includes the concepts of moments and central moments. These measurements are
distinct from the concept of statistics of local image intensities.

Hu introduced the family of moment invariants, taking advantage of the moment
theorem that provides a bijection from derivatives in image space to moments in
frequency [Hu 1962]. In 1D the caculation for computing the regular moment my

moment of image continuously differentiable function 1(x) is shown in equation (4-21).

m, = &), tT(t)dt (4-21)

To compute central moments, the spatial index of integration t is offset to thNe image
centroid calculated in 1D as (7/4,). Central moments my, of the input image I(x) are
defined as

Meo = O, (t - V) T()cl (4-22)

It is possible to postulate the existence of myy(x|s), a multiscale locally adaptive version
of these moment invariants. Using a Gaussian as the neighborhood function and using a
normalization consistent with the moment theorem, the formalization of multiscale
locally adaptive moment invariants becomes

M (x[5) = 0, & (t - V)" T(t) (423

From these basic equations it is clear that moment invariants and multiscale image
statistics are very different. Moment invariants are applied in the spatial domain while
image dtatistics are applied in the intensity domain. Moment invariants capture
information about image geometry; the Taylor reconstruction of the infinite set of central
moments of the image function yields the original image 1(x). Multiscale image
statistics capture information about the histogram of pixel values within an image; the
Taylor reconstruction of the infinite set of central moments of intensity generates the
probability distribution function of 1(x).



Multiscale | mage Statistics 65

4.6. Measurement Aperture, Object Scale, and Noise

How does the error associated with the additive noise propagate through multiscale image
statistics? In particular, how does noise affect the calculation of the local variance or
second central moment? What is the relationship between noise and image geometry?

Assume an image function with additive, zero-mean, Gaussian distributed, spatially
uncorrelated, “white” noise 1(x) = (I(x) +U(x)) where G(x) is a random variable with
zero mean, variance of v,, and no spatial correlation. That is, U(x) ~ N(O,v,). Also,
U(x,) and t(x,) are Gaussian distributed, zero-mean, independent, identically distributed

[andom variables for all spatial coordinates x,* x,. Let the scale-space representation of
[(x) wheres isthe scale or measurement aperture be ~|(x | s) = G(s,x) A (I(x) +U(x))-

Consider M(M?(x | s)) ={n?(x|s)), the mean of the local variance m?(xs).
Applying the calculus of expected valuesto nfz)(x| S) generates the following expression.

M(mf?(x | 5)) = (G(s. ) A (1())* - (G(s ) A T(X))°)
=(G(s. 9 A (I(x))*) - ((G(s A T()’)
=(G(s,X)A (I(x))*) + XG(s,x) A I(x)Ti(x))
HG(s,x) A [U(3))°) - {(G(s,x) A1(x))°)
-2{(G(s ) A 16))(G(s. %) A T(3))) - {(G(s %) A T(X))?)

= G(s, ) A (10))? + 0 +{(T(x))*) - (G(s.x) A1(x))* - 0- 32={(TU(x))*)

(4-24)

Since the variance of U(x) is defined to be vo, equation (4-24) simplifies to the following
expression.

M(m2(x | 5)) = G(s,) A (1))’ - (Gls, ) A1) +(1- =27 Vo (4-25)

4.6.1. Noise Propagation in Multiscale Statistics of an Ergodic Process

Increasing the aperture of the multiscale statistical measurement operator improves the
measurement by decreasing the variance of the reported value through spatial averaging.
This trend holds as long as discontinuities in the image are not encountered. In the
absence of discontinuities, that is, with an image that is a sample of a complete ergodic
process, the relationship between scale and variance can be studied.

Let 1(x) be a constant function (i.e., let I(x) = ¢). Then I(X) is ergodic. With a
constant expected value across the image, multiscale statistics reflect the ergodic
properties of the image as scale increases. In other words, there is a satisfying
correspondence between the scale of the multiscale central moment of intensity operator
and the measurement interval described in the definitions of ergodicity described in
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equations (4-4) and (4-5). Specifically, it can be shown that multiscale statistics can be
used to demonstrate mean-ergodicity using the following two relations.

m (x |s) = G(s, ) A 1(x) %%%® m (x) = c (4-26)

Consider V(1 (x15))= (1 (xI5)- (G(s WA 1)) ), the variance of m,(x ).

V(mx1s))=V(G(s X AT(X))= 527V, %%%® 0 (4-27)

Equation (4-27) shows how M (X|S) converges to I(x) as a function of the initial
variance vp and scales. The relationship in equation (4-27) is derived in Chapter 3.

Using multiscale statistics, it is aso possible to show that ~I(x) is variance-ergodic.
Moreover, a closed form for the convergence of the local variance measure nfz)(xl s) can
be derived. Consider the expected value of the local variance given a constant function

[(X).
(2) _ . 2 N 2 1
M (m (xls))—G(S,X)A(|(X)) - (G(s,x)A 1(x)) +(1' m)’o

=G(s,x)A ¢ - (G(s,x) A ¢’ +(1- mlﬁ)\/o
= &(S,t)czdt . Zec‘i.;(s,t)c dtgz L (= VA

= czé}‘-(s,t)dt - ?&'(S,t) dtgz”L(l" ﬁ?)/o
=c?- C2+(|-- mlg)/o
- (1 2?13)/0 (4-28)

Equation (4-28) implies that as scale increases the expected value of the multiscale
variance approaches a constant value.

(2) _ 1
M{m~(x IS))— (1 m)/o w9390 Vo (4-29)

¥

As scale decreases, m”(xX|s) becomes unstable. If s <=, m{”(x|s) is negative, an
undesirable attribute for a measure of the variance of arandom variable. However, in the
context of discrete statistics, it is consistent with an attempt to compute central moments
from small numbers of discrete samples. It is impossible to generaize statistics of a
population from a single sample. Estimating statistics from a fraction of a sample can
yield nonsensical negative values for variance and for all even order moments.
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4.6.2. Noise Propagation in Multiscale Statistics of a Piecewise Ergodic Process

Most images are not ergodic in the strict sense; they contain discontinuities or boundaries
denoting separate regions and objects within the image. If an image is a sample of a
piecewise ergodic process, it is not possible to increase the aperture of a measurement
operator to infinity without introducing bias from object boundaries. This section extends
the previous discussion on the interaction between scale and noise to include boundary
information.

Consider the simplest piecewise ergodic 1D image, a step function. Unlike the earlier
pulse transfer function examples which were chosen to reflect the symmetry of the
multiscale statistical operators, this example uses a single step. The mathematics are
more easily presented and the effects of the discontinuity remain clear with this type of
input function.

Let 1(x) be astep function T(h, x), such that 1(x) = (T(h,x) +{i(x)) where

0 if x<O

]
ThXO=1h it xs 0

(4-30)

The shape of this threshold step function is portrayed in Figure 4.10.

hI X

0
Figure 4.10. Test function T(h,x)

The following two relations follow.

M (X15) = G(S ,X) A T(h,x) = (h) erf(Zr)
and (4-31)
G(s,x) A (T(h,)* = (h*) erf (Zp)

Inserting (4-31) into equation (4-25) yields a closed form for M(n?(x | s)) that is

dependent on scale s, height of the step function h, the initial variance vo of u(x), and
proximity to the discontinuity expressed by erf () .

M (x| 8)) = () erf(p) - () ert(Z)) + - = Vo (4-32)
relative proximity noise

There are essentially two components to the formal expression for M(m?(x | s)): (1)

a term that measures the proximity of the boundary relative to the measurement aperture
and (2) aterm that reflects the estimate of the variance of the intensity distribution. These
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two terms must be balanced. As scale s increases, the relative distance to the boundary
decreases, so to reduce the influence of the bias introduced by the nearby step edge, a
small measurement aperture is desired. However, the noise term is not defined for very
small scale s. To achieve the best estimate of the variance of 1(x), a large aperture is
desired. Thistradeoff can be resolved if the position of the boundary is known a priori; a
scale can be selected to deemphasize the bias from the step edge while estimating the
variance of the local image intensities.

These results suggest a scale-space approach to measuring the variance within an
image in the absence of a priori boundary information. For an arbitrary image 1(x), a
continuously varying scale-space representation of n{f) (x|s) is easily generated. In
large contiguous regions, larger and larger measurement apertures may be used to
measure the variance of the noise within the region. Near object boundaries, smaller
apertures are required. When boundaries begin to affect the response of nf) (x|s) as
scale increases, we can be sure that the value is being dominated by the relative proximity
term. Thus by analyzing the variance of the multiscale mean operator & (mf? (x | s)).
through scale, minima in the multiscale variance response can be isolated.

4.7. Multiscale Statistics of 2D Images

Extending the construction of multiscale statistics to images of two dimensions is
straightforward. For this work the central moments are constrained to be invariant with
respect to rotation as well as trandation. These constraints specify an isotropic Gaussian
as the sampling kernel given by

o2

52

G(s.p)=5me (4-33)

where p = [py, py].

4.7.1. Multiscale 2D Image Mean

The multiscale 2D image mean is a local weighted average of image values. This
measurement can be expressed as a convolution of the image with a 2D Gaussian kernel.

m (pls) =(i(p);s) = G(s,p) A'i(p)

i ((PX't)2+(ZE[ n?) (4-34)
> ([t ,n])dtdn

¥ ¥
1 NN
“2s20,0°

4.7.2. Multiscale 2D Image Variance

The multiscale 2D image variance measurement, like the multiscale 2D image mean,
generalizes easily from the 1D case.
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2 p1s)=((®- me1s)):s)
=G(s.pA () - mpls))
=6(s.pA([P) - (mPels)

4.7.3. Other Multiscale 2D Image Statistics

The general form for the k-th mul